POLARIZATION OPTICAL STUDIES AT LARGE STRAINS

A, Ya. Aleksandrov, M, Kh, Akhmetzyanov,
G. N. Albaut, and V, N, Baryshnikov

The questions of polarization optical study of the problems of nonlinear elasticity and plasticity
theory with large strains are discussed. In one case transparent models made from rubberlike materials
are used for the study, in the other case the photoelastic coating method is used [1, 2]. In both cases
polyurethane rubber of the SKU-6 type [3] is used as the piezo-optical material. Studies of both elastic
[4] and plastic [5] strains have already been made using this material. However linear strain theory was
used in [4, 5] to analyze the optical patterns, In the present study we propose a technique based on the
theory of strain for rubberlike materials in the Mooney-Rivlin variant. This approach is used to study
the optical and mechanical properties of SKU-6 and to examine the questions of analysis of the optical pai-
terns, and examples of such studies are presented.

NONLINEAR PHOTOELASTICITY

Polarization optical studies [3, 4, 6-9] of the stress-strain state of transparent models for finite
elastic strains (nonlinear photoelasticity) have established that for materials of the transparent rubber
type the Wertheim law in the following form holds for large strains

8 = ¢5 hohg (07 — 0y) (1.1)

Here cg is the optical constant; oy and oy are the principal true stresses; hg is the plate thickness in
the undeformed state; Aj = lj/lj,o (G =1, 2, 3) are the principal elongation ratios; Ij,g and lj are some
dimension prior to and after deformation. The plate is illuminated along 2.

In this case, in contrast with the corresponding law for small strains, we take into account only the
change of the element thickness in the strain process. For elastic strain of isotropic materials the
directions of the principal stresses, principal elongations, and optical axes coincide and can be found by
constructing the isocline field,

To obtain the connection between the optical path difference 6 and the strains of models made from
incompressible materials (which SKU-6 may be considered) we use the representation of the elastic
potential in the form of the Mooney series [6, 7, 10, 11]

W =W, + W+ ... + W,, (1.2)
Here
Wan = Ay (™ 4 ™ 4 A™ — 3) =+ By (M + 172" - 72" — 3)
where Agp, By are constants of the material.
The stresses are found from the expressions
0; = MOW /8h; + 0y, where © = 1/; (61 + @ -} o) (1.3)

We take only two terms of the series (1.2). Then for the plane stress state with account for the in-

compressibility condition
MAghg = 1 (1.4)
we obtain
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o1 =2 (dy 4 Bahy®) (M® — Ag%) + 4 (Ag + By As) (g —2sh) (g 5)
7 55 - 0y =2 (4, - BoM) (A — Ag%) + 4 (As + Bady*) (W —2g%)
(@) ' (b
20 v Substituting (1.5) into (1.1), we find
P
0 // 20 8 = cohohs [2 (Ay + Byhs®) (M —Mo®) + 4 (A4 + Ba &) (A* —2o")] (1.6)
L 0
The relations (1.1), (1.4)—(1.6) were verified experimentally
7 i nc: 5 on specimens of the SKU-6 material, This clear rubber deforms
206" ‘/ﬂ/ . 20 a ’;/”// elastically up to relative elongations of the order of hundreds of
20) y - ¥ / 7 4 percent, yields over this entire interval a clear interference
p A / a pattern, does not mainfest creep effects at room temperature,
r4 5 g Y/ does not have initial and residual optical path differences, and is
vl z s similar in its mechanical properties to certain of the rubbers used
-0 A 1 2p ~16 -4d ag 1§ ) .
P 5 v , industrially.
% Specimens in the form of strips were prepared for uniaxial
Fig, 1 tension, models in the form of a cross whose ends were split into

narrow strips to create a uniform stress state in the working zone
of the model were used for the biaxial tension tests., The compression tests were made on specimens of
rectangular form under plane strain conditions. To this end the plate was placed between two plexiglass
sheets, joined using four bolts, which made it possible to alter the magnitude of the transverse strain,
The sheet surfaces were lubricated with glycerine to reduce friction.

For the SKU-6 material the constants, determined from biaxial tension tests and analyzed by the
method of least squares, were as follows: A, = 8.8 kg/cm?, By =—0.66 kg/em?, 2A4 =—0.51 kg/cm?, 2B, =
0.38 kg/cmz. The stress ratio o3/ 0y in these tests varied from 0.1 to 1.0.

It was noted that the relationship between the constants can be considered constant for different lots
of the SKU-6 rubber, i.e., to determine the mechanical characteristics of the lot it is sufficient to deter-
mine the single constant A, in uniaxial testing of a calibration specimen.

The results of verification of (1.1) for the test material are shown in Fig, la, above. Here and
hereafter the dark and light circles denote the experimental points for uniaxial and biaxial stress states
respectively. The upper partion of Fig, 1b shows results of the check of (1.5), Here the vertical scale is
the true value of the principal stresses oy*, calculated from the measured forces, and the horizontal scale
is the value of ¢y in kg/ cm?, calculated from the measured extensions with the aid of (1,5). The tests
were made for 0.5 = A =25, Inthe process of these tests the optical path differences and transverse
strains of the specimens were also recorded. This made possible a check at the same time of the relations
(1.4) and (1.6), The SKU-6 material was practically incompressible. The results of the check of (1,8) are
represented by the points and continuous curve in the lower part of Fig, la; the vertical scale is the experi-
mentally measured value of the optical path difference 6*, fringes/mm, and the horizontal scale is the value
of 0, fringes/mm, calculated with the aid of (1.6). We see that this relation approximates well the optical
strain relation over the entire range of strains investigated (0,5 = A = 2,5),

Let us establish the possibility of applicability of relations which are simpler than (1.8). It follows
from [3, 4] that for the SKU-6 material we can with adequate accuracy consider that the path difference is
proportional to the difference of the principal Cauchy strains, i.e.,

8 = cehghg (81F — &5F) = cchohs (Ay — Do) (1.7)

The points through which the dashed line, shifted relative to the coordinate origin (Fig, la, below),
passes are plotted from the results of the experiments and calculations using (1,7). We see that (1.7)
approximates quite well the optical strain relation over a large strain interval.

It follows from comparison of (1.7) and (1.6) that in this case the quantity
k=24 + Bhs®)  (hy -+ hy) + 4 (ds + Bakg®) (A + Ay) (M2 4+ Ag%)

must be nearly constant, The calculations showed that for the values of the coefficients Ay, By, A4, By found
for SKU-6 in the interval investigated the quantity k actually varies only slightly. For materials with a
different relationship of these coefficients, the quantity k differs significantly from a constant and therefore
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(1.7) may lead to errors. Figure 1b, below, shows our
A, reduction of the data for rubber obtained in [8] for the uni-
— A=0.5% g ! axial stress state, Here the horizontal scale is the value
-—— Ay v 7‘71'5 Ly of A3 (€1-€9). In plotting curve 1 the values of €4 and &,
/5294 :/ % ‘//’ a corresponded to Cauchy strains, 2 is for Green strains, 3
67 / g\// is for Almansi strains, 4 is for Hencky strains. For this
0.6 %f// ] {/? —— - ry rubber the optical strain relation for the uniaxial stress
LG // i — 3 state is approximated well by a linear relationship between
iy oSS _/\(>\/ ~s| iy the optical path difference and the difference of the Green
J%‘ oo o< T~ ’ principal strains
0.4 05 08 10 12 14 16 Ay

0 = cehyhy (SlG — Sza) (1.8)

We see from these examples that linear relations
between 6 and the difference of the principal strains are not
universal, and for a definite choice of the strain measure are suitable only for a material of a given sort.
In using these relations it is necessary to exercise considerable care, since for some of them it is found
that the "optical constant" cg is a function of the form of the stress state.

Thus, on the basis of measurements with normal transillumination of a plane stress model we can
determine the differences of the principal running forces Azoy— A0y and the directions of the principal
stresses (strains).

Let us examine some techniques for separating the stresses:

a) Integration of the Equilibrium Equations for the Plane Problem, We have

O(Mg0) | 0z - 8 (MgTy,) | Oy =0 (z, ) (1.9)

Expressions (1,9) make it possible to find in the usual way the individual values of the principal
running forces A301 and Az305. To find the true stresses oy and o, and the quantities Ay, A,, A;we use in
addition the coupling equations (1.5) and the incompressibility conditions (1.4). The solution of the resulting
system of equations is carried out with the aid of the nomogram shown in Fig, 2, Here the axes are the
values of the reduced principal running forces aj = A301/2A5 and Ny = Nay/2A4, found by integration of (1.9).
The intersection of the coordinate lines defines Ay and A3, knowing which we can easily find Ay from (1.4) and
o1, 05, In constructing the nomogram we used the relations between the constants presented above for SKU-60.
We note that a similar technique was used in [4], however there the connection between the stresses and
the strains is written in the form of the generalized Hooke's law.

b) Transverse Strain Measurement. If in the experimental process, in addition to normal transillu-
mination of the model we also measure its transverse strains, then finding the individual values of the
strains and stresses reduces to the solution of the system of equations (1.5), (1.1), (1.4) which can be
accomplished when using the SKU-6 material with the aid of the nomogram shown in Fig, 3. Here the
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horizontal axis is the measured value of 73, the vertical axis is the
reduced path difference 4= 8/cq Ajhy, the point of intersection of
the coordinate lines defines Ay and Ay, knowing which we can calculate
the stresses oy and oy using (1.5).

c) Oblique Transillumination of the Model, If oblique trans-
illumination is accomplished in the plane of one of the principal
stresses, then the path difference 0 will be comnected with the
principal stresses by the relation

8y, = cohohg (6, — 0, cos? B) / cos 8 (1.10)

¥ Here 6 is the transillumination angle.

Combining with this equation the basic photoelasticity law
(1.1) and solving these equations for the principal forces, we find

140y = (85 cos 0 — 8 cos® 0)/hecs sin’0

A3y = (85 cos® — 8)/hy ¢ sin?0 (1.11)

The nomogram shown in Fig. 2 can be used to find the values of the principal stresses and the
principal extension ratios.

As an example we consider stretching of a plate with a circular (prior to stretching) hole in the
center. Tigure 4 shows the fringe pattern and curves of the principal true stresses in the cross section of
the plate, obtained by numerical integration of the equations of equilibrium. The magnitude of the true
stress in the uniform stress state zone was gy = 11 kg/cmz.,

We also present the results of a study of stretching of a wide plate which is rigidly clamped along
two sides, The fringe partten (continuous curves on which the numerals denote the fringe order) and the
isoclines (dashed) are shown in Fig, 5 (direction of motion indicated by the arrow). Also shown are the
curves of the extension ratios and stresses kg/ cmz) in the cross section of the plate. The separation of
the stresses and strains was accomplished using the same technique as in the preceding example,

STUDY OF LARGE STRAINS USING PHOTOELASTIC COATINGS

The study of large plastic strains using photoelastic coatings has frequently been made {12, 13] with
the aid of plasticized epoxy resins, which manifest significant relaxation and instability of the physical and
mechanical properties. In our studies we used for this purpose the SKU-6 polyurethane rubber whose
properties were described above. Several techniques for applying the coating fo the surface of the part
were tried,

a) Bonds using adhesives of the PU-2, leuconate, and certain other types fail at relative extensions
in the plane of the bond on the order of 10-20%. Adhesives Nos. 88 and 4 provide compatible operation of
the coating and the part up to strains on the order of 100%, however they react with the SKU-6 during
polymerization and alter somewhat the optical strain characteristics of this material,

b) Direct polymerization of SKU-6 on the surface of the part provides strong adhesion of the coating
with the metal right upuntil failure of the part. The disadvantages are the difficulty in polymerization of the
coatings on a curved surface and complications associated with the necessity for "conditioning" the
material to give it stable properties. The conditioning involves applying several arbitrary loading cycles
to the material, which can be done by stretching the SKU-6 plates several times by hand. The conditioning
of the coating must be accomplished by means of several compression cycles in the direction normal to
the surface.

c) Bonding flat rubber sheets to the surface using an adhesive in the form of the SKU-6 composition
prepared for polymerization avoids the drawbacks of the two preceding techniques and is used to obtain
coatings of thickness one millimeter or more on flat and curved surfaces. The contouring around the
curved surfaces does not cause any marked optical effect and the effect of the "unconditioned" adhesive
layer is quite small for the coating thickness mentioned above. The drawback of this and the previous
technique is the fact that polymerization of the rubber is accomplished at a high temperature (120° C),

769



3 " ,: |
0 A |

w Jil 15 20
L]

Fig, 6

The principal strain directions and the extension ratio function (1.6) are determined from the data

of normal transillumination of the photoelastic coatings. For separate determination of the strains we can
use the methods discussed above for measuring the transverse strains, oblique transillumination, and also
the coating slicing technique. In this case we first measure the optical path difference and the directions
of the optical axes in the continuous coating and then the coating is sliced (using a razor blade, for example)
through the entire depth at the section being studied. By measuring the optical path difference at the edge
of the slice

Ay =8/¢s A,k . @21

we can with the aid of the calibration curve (Fig. 6), obtained in simple extension and compression,
determine the extension ratio Ax in the direction of the slice. The value of Ax is connected with the exten~
sion ratios A; and Ay by the relation

hat =y (M? 4 M) + Yy (g — ) cos 2a (2.2)

Combining with (2.2) the data obtained in studying the continuous coating, and also the incompressi~
bility condition, we obtain the complete system of equations for finding Ay, Ay, A3,

The nomogram of Fig. 7 is constructed to facilitate the solution of this system. Here the values of
2x (left axis) and « (right axis) are laid off along the vertical axes and the resulting points are connected
by a straight line. The point of intersection of this line with the corresponding line Ay = &/ cgAshy = const
defines the extension ratio 2.

The nomogram shows an example for the case in which A&x = 1.5, o = 65°, A; = 0.8. Projecting the
resulting point on the Ay axis along the radial lines, we find that in this case A = 1.9. To find X, we use
the expression which follows from (2,2)

A = (A2 — A2 cos® q) / sin® a (2.3)

The quantity A3 can be found from the knownAjand )\, using the incompressibility condition (1.4),
From the resulting extension ratios we can calculate the principal components of the logarithmic strain
tensor, which is usually used to describe the strain state for large plastic strains

e =Inhy (j=1,23)
Here the &j are the logarithmic strains.

To determine the stresses from the measured strains we can use the method of reproduction of the
strain history [14, 15]. The basis for this method is the hypothesis of macrophysical determinability [16],
Here, to determine the stresses at the point of the part in question it is necessary to establish the strain
tensor component variation process and then reproduce this process on uniformly strainable specimens
of finite dimensions, for example on thinwall tubes subjected to simultaneous action of tension, torsion,
and internal pressure. In the process of this reproduction it is necessary to establish the forces required
for the reproduction, knowing which we can easily find the magnitudes of the stress tensor components in
the specimen, In this way we can define a specimen loading process which on the basis of the hypothesis
of macrophysical determinability will be equivalent to the loading process at the point in question of the
nonuniformly stressed part.
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Fig. 7

In those cases in which the unloading of the material can be described
D /J— sufficienfly exactly by Hooke's law, we can use the unloading method [17] to
_ / ' determine the stresses. In this case the process of complete unloading of the part
y A must be carried out so that creep effects do not show up ("instantaneous" unloading)
f_/ and plastic strains do not arise. From the measured elastic strains with the aid
7 | of Hooke's law we find the stresses present in the part when it is loaded (working
' stresses). Complete unloading of the part is accomplished by removing all the
| g J forces and other factors acting with subseguent slicing of the part into elementary
af cubes or bars. It is obvious that the part must be free of residual stresses prior
Fig. 8 to loading, and the sequence and time for complete unloading must ensure
satisfaction of linear unloading conditions,

Another version of this scheme involves determining experimentally the residual stress tensor in
the model after "instantaneous" removal of the forces and, in addition, determination of the stress tensor
during elastic strain of the model by the same loads, The latter is accomplished either by the analytic
methods of elasticity theory or by the known techniques for modeling elastic problems. In this case the
model must be geometrically similar to the full-scale part at the moment immediately preceding its
unloading., The practical realization of this scheme for finding the stresses became possible after
sufficiently general schemes were found for studying the residual stresses in bodies of arbitrary form
[18-19].

If flow theory is used as the basis for the study, we use the following relations to find the stresses:
6j = o - 26 (85 —e0°) / 3¢5 (i=1,23) (2.4)

Here o¢j is the stress intensity, €; is the strain intensity rate, £; are the principal strain rates, and
€9 is the average strain rate,

The stress intensity is found with the aid of its dependence on the strain ratio e. For the monotonic
loading case, when in the deformation process the principal strain tensor components increase in proportion
to a single parameter and the principal strain directions remain fixed relative to the material fibers of the
body, e is defined by the intensity of the principal logarithmic strains
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(a)

(b)

e=l§§[(ln %)2_;- (In 2“1>2+ (ln 2‘1\2]% (2.5)

As M/
In this case of nonmonotonic loading the following expression is used to calculate the strain ratio:
i
ezssg dt (2.6)
4]
In determining the stresses with the aid of (2.4), the entire loading process must be divided into
several stages, and a polarization-optical study must be made for each loading stage. In (2.4) and (2.6)
we can substitute in place of the strain rates their increments, obtained from the difference of the defor-
mations of two neighboring stages,

In studying plane plasticity problems, just as in the case of small strains [20], we can find the
stresses on the basis of separately taken plasticity theory hypotheses. Thus, if the principal strain (or
strain rate) directions are obtained experimentally, on the basis of the corresponding hypotheses these
directions can be taken as the principal stress directions. Then the process of finding the magnitudes of
the stresses in the plastic zone reduces to numerical integration of the equilibrium equations (1.9) for the
plane problem,
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Similarly, if the magnitudes of the strain (or the maximal shear) intensities are found experimentally,
on the basis of the single hardening curve hypothesis we can find the stress intensity (or the maximal
tangential stresses). Finding the individual magnitudes of the stresses again reduces to numerical inte-
gration of the equations of equilibrium for the plane problem, However (2.4) and the hypotheses on which
they are based (coaxiality of the directions of the principal stresses and strain increments, single hard-
ening curve) are valid only for simple (or sufficiently close to simple) strain processes.

Let us examine some illustrative examples.

a) Stress and strain state of the neck of a plane specimen in tension (cross section 100 X 10 mm,
steel, stress-strain curve shown in Fig, 8, where o5 is in keg/ cmz).

In testing a large number of specimens, approximately equal numbers of cases with the development
of symmetric and inclined necks were observed. The characteristic fringe patterns for gradual develop-
ment of such necks are shown in Figs, 9a and b, respectively. The isocline fields and the trajectories of
the total principal strains and their increments for the symmetric neck, and also the curves of the prineipal
extension ratios in the minimal cross section of this neck are shown in Fig. 10 (continuous curves). Also
shown are the curves of the principal stresses oy and gy, These stresses were determined on the basis of
the hypothesis on coincidence of the directions of the principal stresses and the principal strain increments
(dash~dot) with the aid of the equations of the deformational plasticity theory (continuous curves), with the
~aid of the equations of flow theory (dashed), and with the aid of the unloading method {points), In the latter

case the stresses were found by summation of the residual stresses, measured using the strip slicing
technique [17] in the necked specimen after unloading, together with the stresses found by the photo-
elasticity method in an elastic model fabricated from the ED-6M material with satisfaction of geometric
similarity fo the full-scale part at the moment of unloading.
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The calculations showed that in all cases the maximal values of the stress intensities are reached
at points lying at the center of the neck, which is where failure of the specimen begins. The realization of
the technique for reproduction of the deformation strain history in this example involves difficulty in
obtaining the required uniform stress state with such large strains,

b) Bending flat specimen made from soft steel around a mandrel. The loading scheme, fringe pattern,
and isocline pattern are shown in Fig, 11, Figure 12, left, shows the strain distribution in the middle
section of the specimen and the normal stress curves, obtained on the basis of the equations of deformational
plasticity theory.

¢) Drawing axisymmetric shell from a round plate (red copper) loaded by hydrostatic pressure,
Figure 12, right, shows the stress curves in the meridional section of the shell, obtained with the aid of
the equations of equilibrium (light circles) and on the basis of the equations of the strain theory of
plasticity (dark circles) from the measured strains Aj.
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