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The questions of polarizat ion optical study of the problems of nonlinear elast ici ty and plast ici ty 
theory with large  s t ra ins  are  discussed.  In one case t ransparent  models made f rom rubberl ike mater ia ls  
a re  used for the study, in the other case the photoelastic coating method is used [1, 2]. In both cases 
polyurethane rubber  of the SKU-6 type [3] is used as the piezo--optical mater ia l .  Studies of both elast ic 
[4] and plastic [5] s t rains  have a l ready been made using this mater ia l .  However l inear s t ra in  theory was 
used in [4, 5] to analyze the optical pat terns .  In the present  study we propose a technique based on the 
theory of s t ra in  for rubberl ike mater ia ls  in the Mooney-Rivlin var iant .  This approach is used to study 
the optical and mechanical  proper t ies  of SKU-6 and to examine the questions of analysis  of the optical pat- 
te rns ,  and examples of such studies are  presented.  

NONLINEAR PHOTOELASTICITY 

Polarization optical studies [3, 4, 6-9] of the stress-strain state of transparent models for finite 
elastic strains (nonlinear photeelasticity) have established that for materials of the transparent rubber 
type the Wertheim law in the following form holds for large strains 

6 = co h0~3 (ol -- a2) (1.1) 

Here ca  is the optical constant; el and ~2 are  the principal true s t r e s ses ;  h 0 is the plate thickness in 
the undeformed state; Xj = l j / l j , o  (j = 1, 2, 3) are  the principal elongation ra t ios ;  l j, 0 and lj a re  some 
dimension pr ior  to and after  deformation.  The plate is illuminated along X3. 

In this case,  in cont ras t  with the corresponding law for small  s t ra in~ we take into account only the 
change of the element thickness in the s t ra in  p rocess .  For  elast ic  s t rain of isotropie mater ia ls  the 
directions of the principal s t r e s s e s ,  principal elongations, and optical axes coincide and can be found by 
construct ing the isoeline field. 

To obtain the connection between the optical path difference 6 and the s t rains  of models made f rom 
incompress ible  mater ia ls  (which SKU-6 may be considered) we use the representa t ion  of the elast ic 
potential in the form of the Mooney se r i e s  [6, 7, 10, 11] 

W = W2 + W4 + ...... + W~,~ (1.2) 

Here 

w ~  = A ~  ( ~  + ~22~ + ~ - -  3) + B ~  (~-2~ + ~ - ~  + ~-2~ _ 3) 

where A2n, B2n are  constants of the mater ia l .  

The s t r e s se s  are  found from the expressions 

(I 1 = ~,10 W / O~,j "+ ~Io, where ~0 : 1/s (~1 + ~2 + ~) (1.3) 

We take only two te rms  of the ser ies  (1.2). Then for the plane s t r e s s  state with account for the in-  
compress ib i l i ty  condition 

~i~2X~ = I (1.4) 
we obtain 
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cq = 2 (A 2 + B~22) (~,2 _ ~32) ~_ 4 (At -~ B4 ~2 ~) ( ~  - -  9~3 ~) 
~ = 2 ( A 2 @ B ~  2)(~2 ~ - ~ 3 2 ) + 4 ( A t + B t ~  4) (~2 ~ - ~ )  (1.5) 

Substituting (1.5) into (1.1), we find 

= coh0~ [2 (A~ + B~X~ ~) (~/ - -  ~:~) + 4 (A~ + B~ ~4) ( ~  - -  ~')1 (1.6) 

The re la t ions  (1.1), (1.4)-- (1.6) were  ver i f ied  exper imenta l ly  
on spec imens  of the SKU-6 m a t e r i a l .  This c l ea r  rubbe r  deforms  
e las t i ca l ly  up to re la t ive  elongations of the o rde r  of hundreds of 
pe rcen t ,  yields  ove r  this en t i re  in terval  a c lea r  in te r fe rence  
pa t te rn ,  does not mainfes t  c reep  effects  a t  room t e m p e r a t u r e ,  
does not have initial and res idual  optical  path d i f fe rences ,  and is 
s i m i l a r  in i ts  mechanica l  p rope r t i e s  to ce r ta in  of the rubbe r s  used 
indus t r ia l ly .  

Specimens in the fo rm of s t r i p s  we re  p r e p a r e d  for  uniaxial 
tension,  models  in the fo rm of a c ros s  whose ends  were  spl i t  into 
na r row s t r ip s  to c rea te  a uni form s t r e s s  s ta te  in the working zone 

of the model we re  used for  the biaxial  tension t e s t s .  The compres s ion  tes t s  were  made on spec imens  of 
r ec t angu la r  fo rm under  plane s t r a i n  condit ions.  To this end the plate was p laced between two plexiglass  
shee ts ,  joined using four bolts ,  which made it poss ib le  to a l t e r  the magnitude of the t r a n s v e r s e  s t ra in .  
The sheet  su r faces  we re  lubr ica ted  with g lycer ine  to reduce  f r ic t ion.  

F o r  the SKU-6 m a t e r i a l  the constants ,  de te rmined  f rom biaxial  tension tes t s  and analyzed by the 
method of l e a s t  squares ,  we re  as follows: A 2 = 8.8 k g / c m  2, ]3 2 = --0.66 k g / c m  2, 2A 4 = - 0 . 5 1  k g / c m  2, 2B 4 = 
0.38 k g / c m  2. The s t r e s s  ra t io  cr2/~ t in these  t e s t s  va r i ed  f rom 0.1 to 1.0. 

It was  noted that the re la t ionship  between the constants  can be cons idered  constant  for  different  lots  
of the SKU-6 rubber ,  i .e . ,  to de te rmine  the mechanica l  c h a r a c t e r i s t i c s  of the lo t  i t  is sufficient  to d e t e r -  
mine the single constant  A2 in uniaxial tes t ing of a ca l ibra t ion  spec imen .  

The r e su l t s  of ver i f ica t ion  of (1.1) for  the t e s t  ma te r i a l  a re  shown in Fig.  la ,  above.  Here  and 
h e r e a f t e r  the dark  and light c i r c l e s  denote the exper imenta l  points for  uniaxial and biaxial  s t r e s s  s ta tes  
r e spec t ive ly .  The upper  par t ion  of Fig.  lb shows r e su l t s  of the check of (1.5). Here  the ve r t i ca l  scale  is 
the t rue  value of the pr incipal  s t r e s s e s  al*, calculated f r o m  the m e a s u r e d  fo rces ,  and the horizontal  sca le  
is the value of at in kg /cm 2, calculated f rom the m e a s u r e d  extensions with the aid of (1.5). The tes t s  
we re  made fo r  0.5 - 7~ -<2.5. In the p r o c e s s  of these  t e s t s  the optical  path d i f fe rences  and t r a n s v e r s e  
s t r a ins  of the spec imens  were  a lso  r eco rded .  This made possibl  e a check at  the same  t ime of the re la t ions  
(1.4) and (1.6). The SKU-6 m a t e r i a l  was p rac t i ca l ly  i n c o m p r e s s i b l e .  The r e su l t s  of the check of (1.6) a re  
r e p r e s e n t e d  by the points and continuous curve  in the lower  pa r t  of Fig.  la; the ver t i ca l  scale  is the e x p e r i -  
menta l ly  m e a s u r e d  value of the optical  path d i f ference  5", f r i n g e s / m m ,  and the horizontal  sca le  is the value 
of 5, f r i n g e s / r a m ,  calculated with the aid of (1.6). We see  that this re la t ion  approx ima tes  well  the optical 
s t r a in  re la t ion  over  the en t i re  range  of s t r a in s  inves t iga ted  (0.5 -< ~ -< 2.5). 

Le t  as  es tab l i sh  the poss ib i l i ty  of appl icabi l i ty  of re la t ions  which a r e  s i m p l e r  than (1.6). It follows 
f rom [3, 4] that :[or the SKU-6 m a t e r i a l  we can with adequate a ccu racy  consider  that  the path di f ference is 
p ropor t iona l  to the di f ference of the pr incipal  Cauchy s t r a ins ,  i .e . ,  

6 = c~ho~.3 (81 ~ - -  8 ~ )  = c~ho~3 (~1 - -  ~2) (1.7) 

The points through which the dashed l ine,  shif ted re la t ive  to the coordinate  or igin  (Fig. la ,  below), 
p a s s e s  a re  plotted f r o m  the r e s u l t s  of the expe r imen t s  and calculat ions using (1.7). We see that (1.7) 
app rox ima tes  quite well  the optical  s t r a in  re la t ion  ove r  a l a rge  s t r a in  interval .  

It follows f r o m  compar i son  of (lo7) and (1.6) that in this case  the quantity 

k : 2  (A 2 + B 2 ~ s  2) (}~1 + ~ 2 )  + 4 ( A , + B t ~ 3 4 )  (~1 + ~ 2 )  (~2 + ~ 2 )  

m u s t  be near ly  constant .  The calculat ions showed that for  the values  of the coefficients  A2, B2, A4, B 4 found 
for  SKU-6 in the in terval  inves t igated the quantity k actual ly  va r i e s  only sl ightly.  For  m a t e r i a l s  with a 
different  re la t ionsh ip  of these  coeff ic ients ,  the quantity k differs  s ignif icantly f rom a constant  and the re fo re  
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(1.7) may lead to e r r o r s .  Figure  lb, below, shows our 
reduction of the data for  rubber  obtained in [8] for the uni-  
axial s t r e ss  state.  Here the horizontal scale is the value 
of ~3 (el-%). In plotting curve 1 the values of el and e2 
corresponded to Cauchy s t ra ins ,  2 is for Green s t ra ins ,  3 
is for Almansi  s t ra ins ,  4 is for Hencky strains.  For  this 
rubber  the optical stTain relat ion for the uniaxial s t r e ss  
state is approximated well by a l inear  relationship between 
the optical path difference and the difference of the Green 
principal s t rains  

= c~ho)~3 (61 a - -  ~2 a )  (1.8) 

We see f rom these examples that l inear  relat ions 
between 5 and the difference of the principal s t ra ins  are  not 

universal ,  and for  a definite choice of the s t ra in  measure  are  suitable only for a mater ia l  of a given sor t .  
In using these relat ions it is neces sa ry  to exerc ise  considerable care,  since for some of them it is found 
that the "optical constant" ce is a function of the form of the s t r e ss  state.  

Thus, on the basis  of measurements  with normal t ransi l lumination of a plane s t r e s s  model we can 
determine the differences of the principal running forces  7~3el- k3cr2 and the directions of the principal 
s t r e s s e s  (strains). 

Let  us examine some techniques for  separating the s t resses"  

a) Integration of the Equilibrium Equations for the Plane Problem.  We have 

a(k.~x) / ax § a (~,3~) / au = o (x, y) (1.9) 
Express ions  (1.9) make it possible to find in the usual way the individual values of the principal 

running forces  k3al and ~3cr2. To find the true s t r e s ses  ~l and q2 and the quantities kl, k2, X3we use in 
addition the coupling equations (1.5) and the incompressibi l i ty  conditions (].4). The solution of the result ing 
sys tem of equations is ca r r i ed  out with the aid of the nomogram shown in Fig. 2. Here the axes are the 
values of the reduced principal running forces  a 1 = ksql/2A2 and ~2 = ~3~2/2A2, found by integration of (1.9). 
The in tersect ion of the coordinate lines defines XI and k3, knowing which we can easi ly find k2 from (]..4) and 
al, ~2o In construct ing the nomogram we used the relat ions between the constants presented above for SKU-60. 
We note that a s imi lar  technique was used in [4], however there  the connection between the s t r e s ses  and 
the s t rains  is wri t ten in the form of the general ized Hooke's law. 

b) T ransve r se  Strain Measurement .  If in the experimental  p rocess ,  in addition to normal  t ransf l lu-  
ruination of the model we also measure  its t r ansver se  s t ra ins ,  then finding the individual values of the 
s t ra ins  and s t r e s s e s  reduces  to the solution of the sys tem of equations (1.5), (1.1), (1.4) which can be 
accomplished when using the SKU-6 material  with the aid of the nomogram shown in Fig.  3. Here the 
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Fig.  4 

)~3a2 = (6k cos0-- 6) /h  o c: sin~0 

The nomogram shown in Fig.  2 can be used  to find the values of the pr incipal  s t r e s s e s  and the 
pr incipal  extension r a t i o s .  

As an example  we cons ider  s t re tch ing  of a plate with a c i r cu l a r  (pr ior  to s t re tching)  hole in the 
cen te r .  F igure  4 shows the fr inge pa t t e rn  and curves  of the pr incipal  t rue  s t r e s s e s  in the c ross  sect ion of 
the pla te ,  obtained by numer ica l  in tegra t ion of the equations of equi l ibr ium.  The magnitude of the t rue  
s t r e s s  in the uni form s t r e s s  s tate  zone was ~0 = 11 kg /cm2.  

We also p r e sen t  the r e su l t s  of a study of s t re tch ing  of a wide plate which is r ig id ly  c lamped along 
two s ides .  The fr inge pa r t t en  (continuous curves  on which the numera l s  denote the f r inge  order )  and the 
i socl ines  (dashed) a re  shown in Fig .  5 (direction of motion indicated by the a r row) .  Also shown a re  the 
curves  of the extension r a t io s  and s t r e s s e s  ff:g/cm 2) in the c r o s s  sect ion of the plate .  The separa t ion  of 
the s t r e s s e s  and s t r a ins  was accompl i shed  using the s ame  technique as in the p reced ing  example .  

hor izontal  axis is the m e a s u r e d  value of ~3, the ve r t i ca l  axis is the 
reduced  path di f ference A 0 = 6 / c  a A2h0, the point of in te rsec t ion  of 
the coordinate  l ines defines ki and ~2, knowing which we can calculate 
the s t r e s s e s  al and ~2 using (1.5). 

c) Oblique Trans i l lumina t ion  of the Model. If oblique t r a n s -  
i l luminat ion is accompl i shed  in the plane of one of the pr incipal  
s t r e s s e s ,  then the path di f ference 5 k will be connected with the 
pr incipal  s t r e s s e s  by the re la t ion  

6h  = c~ho)~8 ((A - -  '~2 cos~ 0) / cos 0 (1.10) 

Here  0 is the t rans i l lumina t ion  angle.  

Combining with this equation the bas ic  photoelas t ic i ty  law 
(1.1) and solving these  equations fo r  the pr incipal  fo rces ,  we find 

)~a(~l = (6k cos0--5 cos ~ 0)/h0c~ sin20 

(1.11) 

S T U D Y  OF L A R G E  S T R A I N S  U S I N G  P H O T O E L A S T I C  C O A T I N G S  

The study of l a rge  p las t ic  s t r a ins  using photoelas t ic  coatings has f requent ly  been made [12, 13] with 
the aid of p las t ic ized  epoxy r e s in s ,  which mani fes t  s ignif icant  re laxa t ion  and instabi l i ty  of the physical  and 
mechanica l  p r o p e r t i e s .  In our  s tudies we used for  this purpose  the SKU-6 polyurethane rubber  whose 
p r o p e r t i e s  were  desc r ibed  above.  Several  techniques for  applying the coating to the su r face  of the pa r t  
were  t r ied .  

a) Bonds using adhesives  of the PU-2,  leuconate,  and ce r ta in  other  types fail at  re la t ive  extensions 
in the plane of the bond on the o r d e r  of 10-20%. Adhesives  Nos. 88 and 4 provide  compat ib le  opera t ion of 
the coating and the pa r t  up to s t r a ins  on the o rde r  of 100%, however  they r e a c t  with the SKU-6 during 
po lymer i za t ion  and a l t e r  somewhat  the optical  s t r a in  c h a r a c t e r i s t i c s  of this m a t e r i a l .  

b) Di rec t  po lymer iza t ion  of SKU-6 on the su r face  of the pa r t  provides  s t rong adhesion of the coating 
wi th the  m e t a l r i g h t u p u n t i l  fa i lure  of the pa r t .  The d isadvantages  a r e  the difficulty in po lymer iza t ion  of the 
coatings on a curved sur face  and compl icat ions  assoc ia ted  with the neces s i ty  for  "conditioning" the 
ma te r i a l  to give it  s table  p r o p e r t i e s .  The conditioning involves applying seve ra l  a r b i t r a r y  loading cycles  
to the ma te r i a l ,  which can be done by s t re tch ing  the SKU-6 pla tes  s eve ra l  t imes  by hand. The conditioning 
of the coating mus t  be accompl i shed  by means  of s eve ra l  c o m p r e s s i o n  cycles  in the d i rec t ion  normal  to 
the su r f ace .  

c) Bonding f iat  rubber  sheets  to the su r face  using an adhesive in the f o r m  of the SKU-6 composi t ion 
p r e p a r e d  for  po lymer iza t ion  avoids the drawbacks  of the two preceding  techniques and is used to obtain 
coatings of th ickness  one m i l l i m e t e r  or  more  on f lat  and curved su r f aces .  The contouring around the 
curved  su r faces  does not cause any marked  optical  effect  and the effect  of the "unconditioned" adhesive 
l a y e r  is quite smal l  for  the coating th ickness  mentioned above.  The drawback of this and the previous  
technique is the fac t  that  po lymer iza t ion  of the rubbe r  is accompl ished  a t  a high t e m p e r a t u r e  (120 ~ C). 
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The principal s t ra in  directions and the extension ra t io  function (1.6) a re  determined f rom the da ta  
of normal t ransi l lumination of the photoelastic coatings. For  separate  determination of the s t rains  we can 
use the methods discussed above for  measur ing the t r ansver se  s t ra ins ,  oblique transil lumination,  and also 
the coating sl icing technique. In this case we f i r s t  measure  the optical path difference and the directions 
of the optical axes in the continuous coating and then the coating is sl iced (using a r azo r  blade, for  example) 
through the entire depth at the section being studied. By measur ing the optical path difference at the edge 
of the sl ice 

A 0 = 6 / c a A  sho (2.1) 

we can with the aid of the calibration curve (Fig0 6), obtained in simple extension and compress ion,  
determine the extension rat io }`x in the direct ion of the sl ice.  The value of X x is connected with the exten-  
sion rat ios X l and 7, 2 by the relat ion 

k~ 2 =1/2 Oh 2+k22) +1/2 (kl 2 -k22)cos  2a (2~ 

Combining with (2.2) the data obtained in studying the continuous coating, and also the i ncompres s i -  
bility condition, we obtain the complete sys tem of equations for  finding }`1, }`2, 7'3. 

The nora .g ram of Fig.  7 is constructed to facili tate the solution of this system~ Here the values of 
}`x (left axis) and ~ (right axis) are  laid off along the ver t ical  axes and the resul t ing points are  connected 
by a s t ra ight  line. The point of intersect ion of this line with the corresponding line a 0 = 5/c.A2h 0 = const 
defines the extension rat io X 1. 

The nora .g ram shows an example for the case in which }`x = 1.5, ~ = 65 ~ A 0 = 0.80 Project ing the 
resul t ing point on the } l̀ axis along the radial lines~ we find that in this case } l̀ = 1.9. To find ~ we use 
the express ion  which follows f rom (2.2) 

k2 ~' = (k~ ~ -- ki 2 cos 2 a) / sin 2 a (2.3) 

The quantity }̀ 3 can be found from the known },l and ~ using the incompress ibi l i ty  condition (].4). 
F rom the resul t ing extension ra t ios  we can calculate the principal components of the logar i thmic s t ra in  
tensor~ which is usually used to descr ibe the s t ra in  state for large plast ic s t rains  

e j = l n k j  ( j  = 1 ,  2, 3) 

Here the ej are  the logari thmic s t ra ins .  

To determine the s t r e s s e s  f rom the measured  s trains  we can use the method of reproduct ion of the 
s t ra in  h is tory  [14, 151o The basis for this method is the hypothesis of macrophysical  determinabil i ty [16]. 
Here, to determine the s t r e s ses  at  the point of the par t  in question it is necessa ry  to establish the s t ra in  
tensor  component var ia t ion p rocess  and then reproduce this p rocess  on uniformly strainable specimens 
of finite dimensions,  for  example on thinwall tubes subjected to simultaneous action of tension, torsion,  
and internal p re s su re .  In the process  of this reproduction it is necessa ry  to establish the forces  required 
for  the reproduction,  knowing which we can easi ly find the magnitudes of the s t r e s s  tensor  components in 
the specimen.  In this way we can define a specimen loading process  which on the basis of the hypothesis 
of macrophysical  determinabil i ty will be equivalent to the loading process  at the point in question of the 
nonuniformly s t r e s sed  par t .  
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In those cases  in which the unloading of the ma te r i a l  can be descr ibed  
'0-J~ [ I ~  suff icient ly exact ly  by Hooke 's  law, we can use the unloading method [].7] to 
-1 / / /  [ de te rmine  the s t r e s s e s .  In this case  the p roce s s  of complete  unloading of the pa r t  

4 mus t  be c a r r i e d  out so that c r eep  effects  do not show up (~instantaneous ~ unloading) 
L i i and p las t ic  s t r a in s  do not a r i s e .  F r o m  the m e a s u r e d  e las t ic  s t r a ins  with the aid 

I ~ of Hooke 's  law we find the s t r e s s e s  p r e sen t  in the pa r t  when it is loaded (working 
s t r e s s e s ) .  Complete unloading of the p a r t  is accompl i shed  by removing  all the 

0 i ~ fo rces  and other  f ac to r s  act ing with subsequent  s l ic ing of the p a r t  into e l emen ta ry  
~t cubes or  b a r s .  It is obvious that  the pa r t  mus t  be f ree  of res idua l  s t r e s s e s  p r i o r  

F ig .  8 to loading, and the sequence and t ime for  complete  unloading mus t  ensure  
sa t i s fac t ion  of l i nea r  unloading conditions.  

Another  ve r s ion  of this scheme  involves de te rmin ing  exper imenta l ly  the res idual  s t r e s s  t ensor  in 
the model a f t e r  " ins tantaneous  H r emova l  of the fo rces  and, in addition, de te rmina t ion  of the s t r e s s  t ensor  
during e las t ic  s t r a in  of the model by the s a m e  loads .  The l a t t e r  is accompl i shed  e i ther  by the analyt ic  
methods of e las t ic i ty  theory  or  by the known techniques for  modeling e las t ic  p r o b l e m s .  In this case  the 
model mus t  be geomet r i ca l ly  s i m i l a r  to the fu l l - sca le  pa r t  at  the momen t  immedia t e ly  p reced ing  its 
unloading. The p rac t i ca l  rea l iza t ion  of this scheme for  finding the s t r e s s e s  became  poss ib le  a f t e r  
sufficiently general  s chemes  were  found for  studying the res idual  s t r e s s e s  in bodies of a r b i t r a r y  fo rm 
[18-19]. 

If flow theory  is used  as  the bas i s  for  the study, we use the following re la t ions  to find the s t r e s s e s :  

~j ~ ~0 ~- 2~ (ej" -- e0") / 3ej" (]-~t, 2, 3) (2.4) 

Here ~i is the stress intensity, ~i is the strain intensity rate, ~j are the principal strain rates, and 
e 0 is the average strain rate. 

The stress intensity is found with the aid of its dependence on the strain ratio e. For the monotonic 
loading case, when in the deformation process the principal strain tensor components increase in proportion 
to a single parameter and the principal strain directions remain fixed relative to the material fibers of the 
body~ e is defined by the intensity of the principal logarithmic strains 
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In this case  of nonmonotonic loading the following express ion  is used  to calculate  the s t r a in  rat io:  

e = f s~" dt (2.6) 
0 

In de termining  the s t r e s s e s  with the aid of (2.4), the ent i re  loading p r o c e s s  mus t  be divided into 
s eve ra l  s tages ,  and a po la r i za t ion-op t i ca l  study mus t  be made for  each loading s tage .  In (2.4) and (2.6) 
we can substi tute in place of the s t r a in  r a t e s  the i r  i nc remen t s ,  obtained f rom the di f ference  of the d e f o r -  
mations of two neighboring s t ages .  

In studying plane plas t ic i ty  p rob l ems ,  just  as in the case  of smal l  s t r a ins  [20], we can find the 
s t r e s s e s  on the bas i s  of s epa ra t e ly  taken p las t ic i ty  theory hypotheses .  Thus,  if  the pr incipal  s t r a in  (or 
s t r a in  ra te)  d i rect ions  a r e  obtained exper imenta l ly ,  on the bas i s  of the cor responding  hypotheses  these 
di rect ions  can be taken as the pr incipal  s t r e s s  d i rec t ions .  Then the p roces s  of finding the magnitudes of 
the s t r e s s e s  in the p las t ic  zone reduces  to numer ica l  in tegrat ion of the equi l ibr ium equations (1.9) for  the 
plane p rob l em.  
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Similar ly ,  if the magnitudes of the s t r a i n  (or the maximal  shear)  in tens i t ies  a r e  found exper imenta l ly ,  
on the bas i s  of the single hardening curve  hypothesis  we can find the s t r e s s  intensi ty (or the maximal  
tangential  s t r e s s e s ) .  Finding the individual magnitudes of the s t r e s s e s  again reduces  to numer ica l  i n t e -  
grat ion of the equations of equi l ibr ium for  the plane p rob l em.  However  (2.4) and the hypotheses  on which 
they a r e  based  (coaxiality of the d i rec t ions  of the pr incipal  s t r e s s e s  and s t r a in  i nc remen t s ,  single h a r d -  
ening curve)  a r e  valid only fo r  s imple  (or suff icient ly close to s imp le ) s t r a in  p r o c e s s e s .  

Le t  us examine  some  i l lus t ra t ive  e x a m p l e s .  

a) S t ress  and s t r a in  s ta te  of the neck of a plane spec imen  in tension (cross  sect ion 100 x ]0 ram, 
s tee l ,  s t r e s s - s t r a i n  curve shown in Fig.  8, where  a i  is in kg/cm2).  

In tes t ing a l a rge  number  of spec imens ,  approx imate ly  equal numbers  of cases  with the development  
of s y m m e t r i c  and inclined necks  were  obse rved .  The c h a r a c t e r i s t i c  f r inge  pa t t e rns  for  gradual  deve lop-  
ment  of such necks a r e  shown in F igs .  9a and b, r e spec t ive ly .  The isocl ine fields and the t r a j e c t o r i e s  of 
the total  pr incipal  s t r a ins  and the i r  i nc r emen t s  for  the s y m m e t r i c  neck, and also the curves  of the pr incipal  
extension ra t ios  in the minimal  c ross  sec t ion  of this neck a r e  shown in Fig .  ]0 (continuous curves) .  Also 
shown a re  the curves  of the pr incipal  s t r e s s e s  al and ~2. These  s t r e s s e s  were  de te rmined  on the bas i s  of 
the hypothes is  on coincidence of the d i rec t ions  of the pr incipal  s t r e s s e s  and the pr incipal  s t r a in  inc remen t s  
(dash-dot) with the aid of the equations of the deformat ional  p las t ic i ty  theory  (continuous curves) ,  with the 
aid of the equations of flow theory  (dashed), and with the aid of the unloading method (points). In the l a t t e r  
case  the s t r e s s e s  were  found by summat ion  of the res idua l  s t r e s s e s ,  m e a s u r e d  using the s t r i p  s l ic ing 
technique [17] in the necked spec imen  a f t e r  unloading, together  with the s t r e s s e s  found by the photo_ 
e las t ic i ty  method in an e las t ic  model f ab r ica ted  f rom the ED-6M ma te r i a l  with sa t i s fac t ion  of geomet r i c  
s im i l a r i t y  to the fi~ll-scale p a r t  at the m om en t  of unloading. 
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The calculations showed that in all cases the maximal values of the s t ress  intensities are reached 
at points lying at the center of the neck, which is where failure of the specimen begins. The realization of 
the technique for reproduction of the deformation s t ra in  history in this example involves difficulty in 
obtaining the required uniform stress  state with such large strains.  

b) Bending fiat specimen made from soft steel around a mandrel. The loading scheme, fringe pattern, 
and isocline pattern are shown in Fig. 11. Figure 12, left, shows the strain distribution in the middle 
section of the specimen and the normal s t ress  curves, obtained on the basis of the equations of deformational 
plasticity theory. 

c) Drawing axisymmetric shell from a round plate (red copper) loaded by hydrostatic pressure .  
Figure 12, right, shows the s t ress  curves in the meridional section of the shell, obtained with the aid of 
the equations of equilibrium flight circles) and on the basis of the equations of the strain theory of 
plasticity (dark circles) from the measured strains h i. 
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